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Abstract. The wave equation describing the vector propagation of a
femtosecond laser pulse of a few optical cycles in a uniaxial crystal is solved
numerically by the method of unidirectional waves. Propagation of the pulse in
the direction normal to the optical axis is studied, taking into account both
second- and third-order nonlinearities of the crystal. Conversion efficiency as a
function of crystal length, pump intensity and pulse duration is studied. As an
example, the propagation of femtosecond laser pulse of � ¼ 10 fs duration at
l¼ 810 nm in a LiNbO3 crystal 12 mm thick is studied numerically.

1. Introduction
Recent progress in the generation of extremely short optical pulses has

stimulated the development of propagation theory of optical pulses of a few cycles
in crystals. It is known that during the propagation of such extremely short pulses
in a nonlinear crystal the radiation generation takes place both at difference and at
sum frequencies. At the same time the generation of difference frequencies in a
medium with second-order nonlinearity is usually used for the generation of a
coherent short radiation pulse in the infrared spectrum range [1].

It is clear that the approximation of slowly varying amplitude is not applicable
to the description of such processes [2]. Therefore, for the description of the
propagation process of a femtosecond laser pulse of a few optical cycles in an
anisotropic optical crystal it is necessary to use either numerical methods or some
special analytical methods.

In particular, in [3] the results of numerical simulation of propagation process
of a femtosecond laser pulse with 10 fs duration in a nonlinear potassium
dihydrogen phosphate crystal with 100 mm thickness obtained by the numerical
integration of the Maxwell vector equation are given. There a comparison of those
results with similar data obtained by the slowly varying amplitude (SVA) method
is given, and it is shown that the description of the second-harmonic generation
process by such short pulses by the SVA method is not correct.

So, the correct analytic description of the propagation of femtosecond laser
pulse of a few optical cycles in an anisotropic nonlinear optical crystal is a very
topical problem.

In [4] the analytic description of the propagation of a femtosecond laser pulse
of a few optical cycles in a medium with second-order nonlinearity was given on
the basis of the method of unidirectional waves (MUW). It has been shown there
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that in the approximation of small nonlinearity and negligible material dispersion
the propagation of an extremely short pulse can be described adequately by the
MUW.

The MUW was used also for the solution of problem of the propagation of a
femtosecond laser pulse of few optical cycles in a dispersionless medium with
third- and fifth-order nonlinearity [5].

In this article, the MUW for the solution of the problem of vector propagation
of a pulse of a few optical cycles in a negative uniaxial crystal taking into account
both second- and third-order nonlinearities is proposed.

The conversion efficiency is studied as a function of crystal length, pump
intensity and pulse duration.

As an example, the propagation of a femtosecond laser pulse of �¼ 10 fs
duration at l¼ 810 nm in a LiNbO3 crystal 12 mm thick is studied numerically.

2. Wave equation for the description of a non-resonant interaction
between an extremely short light pulse and a uniaxial crystal
Note that when solving the problem of vector propagation of a femtosecond

laser pulse of a few optical oscillations in a uniaxial optical crystal, the usual wave
separation on the first and second harmonics is not applicable.

In the general case the wave equation describing the light pulse propagation in
an anisotropic nonlinear transparent medium can be written in the vector form

JðJ � EÞ ��Eþ
1

c2
q2D
qt2

¼ 0; ð1Þ

where E¼ (Ex,Ey,Ez) is the electric-field intensity vector of light pulse and
D¼ (Dx,Dy,Dz) is the electric displacement vector.

Consider a linearly polarized laser pulse E¼ (Ex, 0, 0) of a few optical cycles
with a plane wavefront propagating along the y axis, normal to the optical z axis of
a uniaxial crystal of 3m symmetry group. In this case equation (1) can be written
in x and z components as

q2Ex

qy2
�

1

c2
q2Dx

qt2
¼ 0;

q2Ez

qy2
�

1

c2
q2Dz

qt2
¼ 0;

Dy ¼ 0:

ð2Þ

Thus, the electric displacement vector D is normal to the direction of pulse
propagation. So, because Ey¼ 0 as was mentioned above, the system of equations
for the description of pulse propagation in a medium can be written as

q2Ex

qy2
�

1

c2
q2Ex

qt2
¼

4p
c2
q2Px

qt2
;

q2Ez

qy2
�
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qt2
:

ð3Þ
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In the linear part of the medium the polarization PLx,Lz, is

PLx;LzðtÞ ¼

Z 1

0

�x;zð�ÞEx;zðt� �Þ d�; ð4Þ

where �x, z(t) is the linear susceptibility of the medium for x, z polarized waves
correspondingly; the electric field intensity in the integrand (4) may be expanded
by the small parameter �¼ �0T/T0, where �0T is the medium response time and T0

is the average oscillation period.
After expansion the linear polarization becomes

PLx;LzðtÞ ¼ �0x;0zEx;zðtÞ �
�2x;2z

2
Ex;zðtÞ; ð5Þ

where

�0x;0z ¼

Z 1

0

�x;zð�Þ d� ¼ �x;zð! ¼ 0Þ; ð6Þ

�2x;2z ¼ �

Z 1

0

�2�x;zð�Þ d� ¼ �00
x;zð! ¼ 0Þ; ð7Þ

�0x,0z are the low-frequency limits of the linear susceptibilities and �2x,2z are the
low-frequency limits of the second derivatives of the linear susceptibilities.

This expansion in the linear part of the medium’s polarization, in particular,
could be used for the description of the crystal’s linear response to the laser
radiation of a few optical cycles in the near-infrared spectrum range. For example,
for a pulse with wavelength l0¼ 0.81 mm (T0¼ 2.7 fs), propagating in crystal with
a linear electron response time �0m� 0.5–1 fs [6], the parameter �¼ �0m/T0�

0.18–0.36.
In the nonlinear part of the medium’s polarization of a uniaxial crystal of 3m

group, which is responsible for second- and third order-nonlinearities, we shall
confine ourselves to the quasistatic approximation:

PNLxðtÞ ¼ 2d31ExðtÞEzðtÞ þ 4�11E
3
xðtÞ þ 12�16E

2
zðtÞExðtÞ;

PNLzðtÞ ¼ d31E
2
xðtÞ þ d33E

2
zðtÞ þ 4�33E

3
zðtÞ þ 4�31E

3
xðtÞ;

ð8Þ

where d31 and d33 are the non-zero components of the second-order crystal
susceptibility tensor, and �11, �16, �33 and �31 are the non-zero components of the
third-order crystal susceptibility tensor [7–9].

The quasi static approximation in the nonlinear part of the medium’s
polarization actually fits the assumption about the inertialess nature of the crystal
nonlinear response, which takes place in the near-infrared spectrum range [6].

In the unidirectional wave approximation the system of equations (3) is
reduced to the following system:

qEx

qy
þ
nx

c

qEx

qt
¼ �

2p
cnx

qP1x

qt
;

qEz
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þ
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c
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2p
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ð9Þ
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where

P1xðtÞ ¼ PLxðtÞ þ PNLxðtÞ;

P1zðtÞ ¼ PLzðtÞ þ PNLzðtÞ;

nx;z ¼ ð1þ 4p�0x;0zÞ
1=2:

ð10Þ

By substituting equations (5) and (8) into equation (9), we obtain the following
equations for ordinary and extraordinary waves:
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By making substituting the dimensionless values into equation (11) via the
formulae

� ¼
ynx

c�0
;

� ¼
ynx

c�0
�

t

�0
;

Ex ¼ E0Fx;

Ez ¼ E0Fz;

ð12Þ

where 2�0 is the incident pulse duration, E0 is the maximal value of the real
amplitude of the field polarized along the x axis at the input of the medium, and Fx

and Fz are the x and z components respectively of the normalized value of the
electrical field amplitude vector in a medium, equation (11) becomes
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By substituting

p�2x

n2x�
2
0
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p�2z
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we find that
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The final equations will be

qFx

q�
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q3Fx
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ð15Þ

The system of equations (15) describing the propagation of femtosecond laser
pulse of a few optical cycles in a negative uniaxial crystal in the direction normal to
optical axis taking into account both the second- and third-order nonlinearities
does not have an analytic solution.

The first terms on the right-hand sides of the system of equations (15) describe
a linear dispersed broadening of femtosecond pulses of ordinary and extraordinary
polarizations. Here the lengths of dispersed broadening for the pulses of ordinary
and extraordinary polarizations are determined in the following way:

LDx ¼
cnx�

3
0

p�2x
¼

c�0
bxnx

;

LDz ¼
cnz�

3
0

p�2z
¼

c�0
bznx

:

ð16Þ

The remaining terms on the right-hand sides of the system of equations (15)
describe the processes of nonlinear interaction of pulses of ordinary and
extraordinary polarizations, caused by both second and third-order nonlinearities
of the nonlinear crystal. Here the nonlinear lengths, caused by second- and third-
order nonlinearities of nonlinear crystal, are determined as

L
ð2Þ
NLxz ¼

c�0
nxaxz

; L
ð2Þ
NLxx ¼

c�0
nxaxx

; L
ð2Þ
NLzz ¼

c�0
nxazz

; ð17Þ

L
ð3Þ
NLxx ¼

c�0
nxcxx

; L
ð3Þ
NLxz ¼

c�0
nxcxz

; L
ð3Þ
NLzz ¼

c�0
nxezz

; L
ð3Þ1

NLxx ¼
c�0
nxexx

: ð18Þ
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The second summand on the left-hand side of the second equation of system
(15), proportional to �n, describes the inequality of the pulse velocities of ordinary
and extraordinary polarizations in a crystal.

Detuning of velocities causes a bias of the pulse of extraordinary polarization
during propagation in a nonlinear crystal in relation to the pulse of an ordinary
wave. This causes the decrease in the radiation conversion efficiency. As a charac-
teristic parameter the following length can be used:

Lu ¼
c�0

nx � nz
; ð19Þ

The effect of detuning of the velocities on the efficiency of harmonic generation
depends on the ratio of the interaction length z to the length Lu. When z < Lu,
stationary harmonic generation takes place. When z>Lu, the harmonic oscillation
mode is essentially unsteady.

3. Results of numerical simulations
Figures 1 and 2 show the results of numerical simulations of the system of

equations (15), describing the propagation of femtosecond pulses of ordinary
polarization (Fx(�, �)) and extraordinary polarization (Fz(�, �)) in a uniaxial optical
crystal LiNbO3, with the following boundary conditions for pulse fields of
ordinary and extraordinary waves at the input of the crystal:

Fxð0; �Þ ¼ exp �
�2

2

� �
cos ðW�Þ;

Fz 0; �ð Þ ¼ 0;

ð20Þ

where W¼!0�0 and !0 is the spectrum central frequency of the input videopulse.
Computations are made for the following values: the input pulse duration was

2�0¼ 10 fs, the central wavelength l0¼ 2pc/!0¼ 0.81 mm, the incident radiation
intensity I¼ 5�108Wcm2, nx¼ 2.159, nz¼ 2.093, d31¼�5.8�10�12mV�1, d33¼
�3.4�10�11mV�1, axx¼�0.99�10�3, axz¼�0.96�10�3, azz¼�5.81�10�3,
bx¼ 1.1481�10�4, bz¼ 4.7160�10�5, cxx¼ 7.9221�10�6, cxz¼ 2.3133�10�6, ezz¼
8.1719�10�6, exx¼ 2.4516�10�5 and the crystal length z¼ 12 mm. For predeter-
mined numerical values of the dispersed broadening lengths for pulses of ordinary
and extraordinary polarization, LDx¼ 6mm and LDz¼ 14,7mm, the nonlinear
lengths determined by second- and third-order nonlinearities of a crystal are
L
ð2Þ
NLxz ¼ 0:724mm,L

ð2Þ
NLxx ¼ 0:702mm,L

ð2Þ
NLzz ¼ 0:12mm,L

ð3Þ
NLxx ¼ 87:7 cm,L

ð3Þ
NLxz ¼

30:03m, L
ð3Þ
NLzz ¼ 6:95m, L

ð3Þ0

NLxx ¼ 2:32m, and the length Lu ¼ 45:45�m. As evi-
dent from aforementioned numerical values, the length of our selected crystal
z<Lu. This means that in this particular case the stationary harmonic oscillation
mode occurs.

In figure 1 (a) the time dependence is shown for a femtosecond pulse field with
ordinary polarization at the crystal input (z¼ 0); in figure 1 (b) the time
dependence is shown for a femtosecond pulse field with ordinary polarization at
the crystal output; in figure 1 (c) the time dependence is shown for a femtosecond
pulse field with extraordinary polarization at the crystal output.

In figure 2 (a) the normalized amplitude spectrum for a femtosecond pulse
field with ordinary polarization (Sx(!)/Sx0(!)) at the crystal input is given;
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in figure 2 (b) the normalized amplitude spectra for femtosecond pulse fields with
ordinary polarization (Sx(!)/Sx0(!)) and extraordinary polarization (Sz(!)/Sx0(!))
at the crystal output are given.

According to the numerical calculations results and as shown in figure 2, the
radiation conversion ratio �� [Sz(!)/Sx0(!)]

2 at the double frequency 2!0, for the
aforementioned numerical values of parameters, is approximately 22% and, at
frequencies near zero frequency and 3!0, �<0.18%. It is obvious that only those
spectral components that are in the passband of a crystal will propagate in a
medium. In particular, for our LiNbO3 crystal the passband is 0.33–5.5 mm,
3.4272� 1014–5.712� 1015 rad s�1 [9].

Figure 3 shows the dependence of the radiation conversion ratio �� [Sz(!)/
Sx0(!)]

2 at frequencies near the double frequency 2!0 from the crystal length for
the femtosecond pulse durations �0¼ 5 and 10 fs and for an incident radiation
intensity I¼ 5�108Wcm�2.

Figure 1. Dynamics of a femtosecond pulse with an ordinary polarization with 10 fs

duration (l0¼ 0.81 mm) and intensity 5�108Wcm�2, propagated in a LiNbO3 crystal,

when (a) z¼ 0 mm and (b) z¼ 12 mm. (c) Femtosecond pulse with an extraordinary

polarization at the crystal’s output.
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As shown in the figure, for a given crystal length, as the femtosecond pulse
duration decreases, the efficiency of conversion to the second harmonic also
decreases. From the physical point of view, this means that, as the pulse duration
decreases, that is as the pulse spectrum width increases, the phase synchronism
condition holds for a minority of the pulse spectrum. This, in turn, causes the
decrease in the radiation conversion efficiency at frequencies near the double
frequency.

Figure 2. (a) Normalized amplitude spectrum for a femtosecond pulse field with an

ordinary polarization (Sx(!)/Sx0(!)) at the input of the crystal. (b) Normalized

amplitude spectra for femtosecond pulse fields with ordinary polarization (Sx(!)/
Sx0(!)) and extraordinary polarization (Sz(!)/Sx0(!)) at the output of the crystal.

Figure 3. Dependence of the radiation conversion ratio �� [Sz(!)/Sx0(!)]
2 at frequencies

near 2!0 from the length of crystal, for femtosecond pulse durations �0¼ 5 and 10 fs

and incident radiation intensity I¼ 5�108Wcm�2.
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Figure 4 shows the dependence of the radiation conversion ratio �� [Sz(!)/
Sx0(!))

2 at frequencies near the double frequency 2!0 from the incident radiation
intensity for the femtosecond pulse durations �0¼ 5 and 10 fs and for a crystal
length z ¼ 12 mm.

Figure 5 shows the dependence of the radiation conversion ratio �� [Sz(!)/
Sx0(!)]

2 at frequencies near the double frequency 2!0 from the femtosecond pulse
duration for an incident radiation intensity I¼ 5�108Wcm�2and crystal lengths
z¼ 12 and 20 mm.

As follows from the numerical calculations, in contrast with [4], during
femtosecond pulse propagation in a nonlinear crystal, taking into account third-
order nonlinearity, the generation of sum frequencies concentrated near the triple
frequency of the original pulse also takes place.

According to the numerical calculations of the system of equations (15), during
the propagation of femtosecond laser pulse of a few optical oscillations in a
negative uniaxial crystal in the direction normal to optical axis, taking into account
both second- and third-order nonlinearities, in case when phase synchronism is

Figure 5. Dependence of the radiation conversion ratio � � [Sz(!)/Sx0(!)]
2 at frequencies

near 2!0 from the femtosecond pulse duration, for incident radiation intensity

I¼ 5�108Wcm�2 and crystal lengths z¼ 12 and 20 mm.

Figure 4. Dependence of the radiation conversion ratio � � [Sz(!)/Sx0(!)]
2 at frequencies

near 2!0 from the incident radiation intensity, for femtosecond pulse durations �0¼ 5

and 10 fs and crystal length z¼ 12 mm.
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not applicable to the whole broad pulse spectrum, the pulse of extraordinary waves
arises and is enhanced in the crystal, and in its spectrum the sum and difference
frequencies regions are clearly defined. The frequencies corresponding to the maxi-
mum values in the sum frequencies region do not equal 2!0 and 3!0 of the original
pulse. They can be more or less than 2!0 and 3!0, depending on the direction from
the central frequency of original pulse !0 in which the frequency components, not
subject to the phase synchronism condition for second- and third-harmonic
generation, are biased. The maximum in the difference frequencies region always
occurs at zero frequency. The existence of constant component of the field is
noticeable also in the time profile of extraordinary pulse. The broad spectrum of
the extraordinary pulse determines the original pulse duration.

4. Conclusions
In this paper we derived a system of nonlinear wave equations (15) that

describes the propagation of a femtosecond laser pulse of a few optical oscillations
in a negative uniaxial crystal in the direction normal to the optical axis, taking into
account both second- and third-order nonlinearities, in the case when phase
synchronism is not applicable to the whole broad pulse spectrum. In the linear part
of the medium’s polarization an expansion in the small parameter, equal to the ratio
of the medium’s response time to the average oscillation period of the femtosecond
pulse, is made. This expansion could be used for to decribe the uniaxial crystal’s
linear response to the laser radiation of a few optical oscillations in the near-infrared
spectrum range. In the nonlinear part of the polarization of a uniaxial crystal of the
3m group, responsible for the second- and third-order nonlinearities, we confine
ourselves to considering the quasistatic approximation that takes place in the near-
infrared spectrum range and for small thicknesses of the nonlinear crystal.

From the numerical analysis of system (15) it follows that consideration of
third-order nonlinearity causes in the optical femtosecond pulse spectrum the
spectral components of an extraordinary polarization concentrated in the triple-
frequency region of original pulse.

In this paper the dependences of the radiation conversion ratio �� [Sz(!)/
Sx0(!)]

2 are obtained, both from the femtosecond pulse duration and intensity, and
from the crystal length at frequencies near the double frequency 2!0.

It is shown that the conversion efficiency in the vicinity of the double frequency
2!0 for pulse with a duration of 10 fs is equal to about 22%, while for a pulse of 5 fs
duration it has a value of about 3.7%.
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